Ионизация воздуха

Для обеспечения воздушного комфорта в закрытом помещении имеет значение также электрическое состояние воздушной среды. Последнее зависит от ионного режима, так как положительно и отрицательно заряженные ионы в воздухе являются фактором, обусловливающим определенные изменения в организме.

Доказано, что при условии соответствующего подбора доз и полярности вдыхаемого ионизированного воздуха увеличивается стойкость организма к гипоксии, холоду, влиянию токсических веществ, физической нагрузке. В процессе ионизации воздуха, кроме аэроионов, генерируются также озон и азота оксиды. Поэтому следует обращать внимание не только на изолированное действие аэроионов, но и на биологический эффект, возникающий во время ионизации воздуха в результате комплексного действия аэроионов, озона, азота оксидов и электрического поля.

Ионизация воздуха изменяется интенсивнее при увеличении количества людей в помещении и уменьшении его кубатуры. При этом снижается содержание легких аэроионов вследствие поглощения их в процессе дыхания, адсорбции поверхностями и пр., а также превращения части легких ионов в тяжелые, как это происходит из-за оседания на материальных частицах - "ядрах конденсации", количество которых резко возрастает в выдыхаемом воздухе и при поднятии в воздух пылевых частиц. С уменьшением количества легких ионов связывают потерю освежающей способности воздуха, снижение физиологической и химической активности. Поэтому представляет интерес изучение процессов деионизации и искусственной ионизации воздуха в помещениях, биологического действия деионизированного и искусственно ионизированного воздуха. Это особенно важно в условиях широкого применения установок для кондиционирования воздуха, когда ионный режим воздуха претерпевает изменения при прохождении через систему калориферов, фильтров, воздуховодов и других агрегатов. Нет оснований сомневаться в том, что ионизированный воздух биологически активен. Целесообразно применять как отрицательные, так и положительные аэроионы. Также важным является вопрос о роли химического происхождения аэроионов в осуществлении биологического эффекта. Поэтому простое количественное воссоздание аэроионного режима в помещениях с обычным режимом для свободной атмосферы не может считаться оптимальным.

Необходимо подчеркнуть, что искусственная ионизация воздуха в условиях замкнутых помещений без достаточной подачи воздуха при высокой влажности, запылении и скоплении людей приводит к неминуемому возрастанию количества тяжелых ионов за счет ионизации молекул продуктов метаболизма человека. Кроме того, при ионизации запыленного воздуха количество пыли, которое задерживается в дыхательных путях, резко возрастает. Пыль, несущая в себе электрические заряды, задерживается в значительно большем количестве, чем нейтральная. Попав в легкие, она теряет заряд, вследствие чего пылевые конгломераты распадаются, образуя большие поверхности. Это может привести к активизации физико-химических эффектов пыли и усилению ее биологической активности.

Таким образом, ионизация воздуха не является универсальным средством для оздоровления воздуха закрытых помещений, а иногда, наоборот, способна оказывать отрицательное действие.

Ионизованность воздуха жилых помещений следует оценивать по таким критериям. Концентрация легких, как отрицательных, так и положительных ионов в воздухе жилого помещения должна быть не ниже 200 ионов/см3 и не выше 50 000 ионов/см3. Оптимальными уровнями ионизованности воздуха предложено считать концентрации легких ионов обоих знаков в пределах 1000-3000 ионов/см3, если показатель полярности составляет от минус 0,11 до плюс 0,11.

Следует заметить, что концентрация в воздухе закрытых помещений легких аэроионов свыше 1000 ионов/см3 свидетельствует о сверхнормативном загрязнении воздуха радоном и продуктами его распада.

Доказано, что человек считает воздух чистым и свежим лишь в том случае, если он содержит так называемый ионно-оздоровительный комплекс.

Отрицательные изменения в состоянии здоровья людей, вынужденных работать в гермозонах, где в процессе очистки воздуха от пыли теряются и легкие аэроионы, зависят в значительной мере от деионизации воздуха. Методы обработки воздуха в кондиционерах также приводят к потере легких аэроионов, которые необходимы организму для нормального функционирования. Аналогичные процессы происходят в зоне дыхания оператора видеомонитора. Электростатическое поле уничтожает легкие аэроионы. При загрязнении воздуха аэрозолями, в том числе табачным дымом, полезные аэроионы преобразуются в тяжелые, причисляемые большинством специалистов к отрицательным факторам окружающей среды.

Для коррекции ионизованности воздуха разработаны и предложены аэроионизаторы различного типа: радиоактивные, термические, баллоэлектрические, ультрафиолетовые и аэроионные. Для жилых помещений радиоактивные и ультрафиолетовые ионизаторы применять не рекомендуется. Коронные аэроионизаторы по гигиеническим и экономическим соображениям являются наиболее целесообразными приспособлениями для искусственной оптимизации ионизованности воздуха помещений. Работа коронного ионизатора не должна сопровождаться в эргономически обусловленном пространстве физическим и химическим загрязнением воздуха в концентрациях, превышающих гигиенические нормативы для населенных мест. К обязательным критериям гигиенической оценки коронных ионизаторов относятся: концентрация легких аэроионов; уровни статического электрического поля, электрического и магнитного поля (50 Гц), электромагнитного поля радиочастотного диапазона; содержание озона и азота оксидов на эргономически обусловленном расстоянии.

Освещение и инсоляция. Световой фактор, сопровождающий человека в течение жизни, обеспечивает на 80% информацией, имеет большое биологическое действие, играет первоочередную роль в регулировании самых важных жизненных функций организма.

При изучении света и его действия на организм традиционно рассматривают не только видимые, но и невидимые составляющие - УФ- и инфракрасные лучи, т. е. весь оптический участок спектра лучистой энергии. Все виды излучения имеют одинаковое физическое происхождение, но каждое монохроматическое излучение характеризуется определенной длиной волны и частотой электромагнитных колебаний. Эта разница относительно длины волны и обусловливает качественную характеристику различных участков спектра и особенности биологического действия.

Доказано, что инфракрасные лучи оказывают тепловой, а УФ-лучи - фотохимический эффект. Видимые лучи красного цвета приближаются по воздействию к инфракрасным, фиолетовые - к УФ. В целом видимый участок спектра обусловливает в организме не только местную, но и общую реакцию, часто имеющую неспецифический характер.

Видимая часть спектра из-за многочисленных экстра- и интерорецепторов влияет на органы и ткани, даже те, которые безразличны к лучистой энергии, а также на разнообразные аспекты жизнедеятельности организма. Под воздействием света происходят усиление газообмена, интенсификация азотистого, нормализация минерального обмена.

Изменение светового режима влияет на реактивную способность коры большого мозга. Видимый свет обусловливает изменения иммунологических реакций и деятельности сердечно-сосудистой системы, а также аллергические реакции. Под влиянием УФ-лучей образуются и всасываются физиологически активные вещества и витамин D. Солнечные лучи обладают бактерицидным свойством и вызывают гибель или изменение вирулентности микроорганизмов.

Среди общих физиологических реакций, возникающих под действием света, большое значение для человека имеют процессы ощущения света, внешнего мира, которые связаны с сознанием, т. е. психофизиологическая роль света. Воздействуя на светочувствительные элементы сетчатки, свет вызывает импульсы, распространяющиеся к сенсорным центрам полушарий мозга и в зависимости от условий возбуждает или угнетает кору большого мозга. Это приводит к перестройке физиологических и психических реакций, изменению общего тонуса организма, поддерживает его в деятельном и бодром состоянии. Все указанные изменения в организме возникают вследствие сложной рефлекторной реакции.

В результате сложного характера реакции организма на действие световых раздражителей не всегда удается установить количественную зависимость между уровнем излучения и ответной реакцией. Между тем все основные функции зрения (световая и цветовая чувствительность, острота зрения и скорость различия, контрастное ощущение и пр.) зависят от количества и качества освещения. Для зрительной работы существенное значение имеет не только количественная сторона освещения - уровень освещенности, но и качество освещения, т. е. условия распространения яркости на рабочей поверхности и в окружающем пространстве, контраст между рассматриваемыми деталями и фоном, условия блесткости (прямой и отраженной), направленность, диффузность и спектральный состав светового потока.




Наиболее просматриваемые статьи: