Цитоскелет и патология клетки

«Скелет» клетки выполняет опорную, транспортную, контрактильную и двигательную функции. Он представлен 3 видами филаментов (фибрилл) - микрофиламентами, промежуточными филаментами и микротрубочками - макрофиламентами. Каждый из филаментов, выполняя ряд общих функций клетки, специализирован в отношении преимущественно одной из них - контракции (микрофиламенты), статики (промежуточные филаменты) или движения органелл и транспорта (микротрубочки). Цитоскелет претерпевает различные изменения при многих болезнях и патологических состояниях, что, естественно, влияет на специализированные функции клетки.

Микрофиламенты

Микрофиламенты имеют прямое отношение к актину и миозину. Актиновые филаменты, как и миозин, обнаружены почти во всех клетках. Для миозина, независимо от того, принадлежит он мышечным или немышечным клеткам, характерна одна способность - обратимо связываться с актиновыми филаментами и катализировать гидролиз АТФ, что требует присутствия самого актина. Количество миозина в мышечных клетках в 50 раз больше по сравнению с немышечными, кроме того, миозиновые филаменты мышечных клеток длиннее и толще, чем филаменты немышечных клеток.

Патология микрофиламентов довольно разнообразна. С их дисфункцией связывают, например, определенные виды холестаза и даже первичный билиарный цирроз. Считают, что циркуляция желчи в печени регулируется микрофиламентозной системой, так как микрофиламенты в большом количестве окружают желчные канальцы и, прикрепляясь к плазматической мембране гепатоцитов, могут влиять на размер просвета желчных канальцев. Показано, что воздействия на микрофиламенты, угнетающие их сократительную способность, ведут к застою желчи. Возможно, что подобный механизм лежит в основе некоторых видов холестаза. Резкое увеличение микрофиламентов находят в эпителии желчных протоков при первичном билиарном циррозе, что может быть причиной нарушения кинетики билиарной системы, холестаза и последующего гранулематоза холангиол, характерного для этого заболевания. Однако вопрос о том, первична или вторична аккумуляция микрофиламентов в эпителии билиарной системы при первичном билиарном циррозе, еще не решен. Увеличение количества микрофиламентов описано в клетках злокачественных опухолей, особенно в зонах инвазии опухоли. Микрофиламентозная активность характерна и для ряда репаративных процессов, например для заживления ран.

Микрофиламентозная система служит также секреторным процессам, фагоцитозу и митозу.

Промежуточные филаменты

Промежуточные филаменты достаточно специализированы в зависимости от типа клеток, в которых встречаются: цитокератины находят в эпителиях, скелетин (десмин) - в мышечных клетках, виментин - в мезенхимальных клетках, нейрофиламенты - в клетках центральной и периферической нервной системы, глиальные филаменты - в клетках глии. Однако в клетках одного и того же происхождения могут встречаться промежуточные филаменты разного типа. Так, в гладких мышцах пищеварительной, дыхательной и мочеполовой систем промежуточные филаменты представлены главным образом скелетином, а в гладких мышечных клетках сосудов, как и во многих мезенхимальных клетках, - виментином. В связи с этим понятными становятся функциональные возможности гладких мышечных клеток сосудов (фагоцитоз, фибробластическая трансформация и др.).

С патологией промежуточных филаментов, преимущественно их аккумуляцией, пытаются связать многие патологические процессы: образование алкогольного гиалина (телец Мэллори), нейрофибриллярных сплетений в нервных клетках и сенильных бляшек при старческом слабоумии и болезни Альцгеймера. С аккумуляцией промежуточных филаментов связывают и развитие некоторых форм кардиомиопатии.

Алкогольный гиалин, формирующий тельца Мэллори, обнаруживают обычно в гепатоцитах, реже в эпителии желез поджелудочной железы и нервных клетках головного мозга, при хроническом алкоголизме, индийском детском циррозе, гепатоцеребральной дистрофии (болезни Вильсона-Коновалова), первичном билиарном циррозе. Он имеет характерную ультраструктуру. Однако образование алкогольного гиалина из промежуточных филаментов признается далеко не всеми исследователями. Многие считают, что при алкоголизме алкогольный гиалин является продуктом извращенного синтеза при воздействии на клетку (гепатоцит) этанола с участием в этом процессе цитоскелета.

Патологические изменения нейрофиламентов представлены образованием нейрофибриллярных сплетений, которые описаны при многочисленных патологических состояниях. Нейрофибриллярные сплетения вдоль аксонов периферических нервов и в нервных сплетениях характерны для своеобразного заболевания - наследственной нейропатии гигантских аксонов. Нейрофибриллярные сплетения лежат в основе так называемых сенильных бляшек головного мозга, патогномоничных для старческого слабоумия и болезни Альцгеймера. Однако в случаях появления амилоида в сенильных бляшках, т. е. при локальной церебральной форме старческого амилоидоза, нет оснований для заключения о том, что амилоид строят нейрофиламенты и их сплетения.

Некоторые формы кардиомиопатий рассматриваются в настоящее время как вторичные по отношению к нарушениям метаболизма промежуточных филаментов (десмина). Описана необычная форма кардиомиопатий с прогрессирующей недостаточностью миокарда, характеризующаяся массивными отложениями в кардиомиоцитах PAS-негативного материала, состоящего из промежуточных филаментов. Аккумуляция промежуточных филаментов является морфологическим маркером хронического алкоголизма, при котором скопления их находят в клетках эпителиального и мезенхимального происхождения.

Микротрубочки

Как известно, микротрубочки выполняют множество разнообразных функций: определяют движение и ориентацию хромосом, митохондрий, рибосом, цитоплазматических гранул; принимают участие в секреции, митотическом делении клетки; осуществляют цитоплазматический транспорт. Не менее разнообразна и патология микротрубочек. При воздействии на микротрубочки рядом веществ, активирующих их функции (винбластин, изофлуран и др.), размеры микротрубочек увеличиваются в 2-3 раза. Они образуют скопления, связанные с рибосомами, к ним прилежат паракристаллические включения из гексогонально упакованных субъединиц. К тяжелому повреждению микротрубочек ведет ионизирующее излучение, при этом страдает генетический аппарат клетки, возникают патологические митозы. Резко уменьшается число микротрубочек (особенно в гепатоцитах) при воздействии этанолом, они округляются, вытесняются промежуточными филаментами.

Патология микротрубочек может быть основой некоторых клинико-морфологических синдромов. Таков, например, синдром неподвижных ресничек, ранее известный как синдром Картагенера. При этом врожденном синдроме реснички покровного эпителия дыхательных путей и слизистой оболочки среднего уха, основой строения которого являются дефектные микротрубочки, малоподвижны. Поэтому мукоцеллюлярный транспорт резко ослаблен или отсутствует, что ведет к хроническому воспалению дыхательных путей и среднего уха. У таких больных неподвижны также и сперматозоиды, так как их хвост эквивалентен ресничкам.

Плазматическая мембрана

Плазматической мембране свойственны различные функции, из которых основные - информационная, транспортно-обменная, защитная и контактная. Информационная функция обеспечивается рецепторами мембраны, транспортно-обменная и защитная - самой мембраной, контактная - клеточными стыками.

Клеточная рецепция и патология клетки

Плазмолемма (ее гликокаликс) содержит сложные структуры - рецепторы, воспринимающие различные раздражения («сигналы») внешней среды. Они специализированы для восприятия «сигналов» гормонов, многих биологически активных веществ, антигенов, иммуноглобулинов и их фрагментов, компонентов комплемента и т. д. Рецепторы представлены обычно гликопротеидами, они способны свободно перемещаться как по поверхности клеточной мембраны, так и внутри ее - так называемая латеральная диффузия рецепторов. Поэтому рецепторы можно рассматривать как своеобразные многокомпонентные мембранные комплексы.

Механизм реализации рецепторного сигнала довольно универсален, так как рецепторы связаны с аденилатциклазой. Эта связь представлена трехкомпонентной системой: рецептор на внешней поверхности мембраны, трансдуктор (фосфолипиды) и катализатор на внутренней поверхности мембраны (аденилатциклаза). Аденилатциклаза катализирует внутриклеточное превращение АТФ в АМФ, который в отношении стимуляции клеточных ферментов универсален. Считают, что изменения в любом компоненте рецептора (надмембранном, внутримембранном или подмембранном) должны привести к молекулярным изменениям клеток. Таким образом, основное значение в нарушении рецепторной информации придается разобщению звеньев рецепторного комплекса.

Ряд болезней связан с отсутствием или блокадой рецепторов клетки. Так, отсутствие апо- и В, Е-рецепторов у паренхиматозных и мезенхимальных клеток ведет к развитию гомозиготной гиперлипопротеинемии Па типа, известной также как семейная эссенциальная гиперхолестеринемия. Пересадка печени с сохранными апо-В, Е-рецепторами при гомозиготной гиперлипопротеинемии снижает уровень холестерина крови до нормы, ведет к исчезновению проявлений атеросклероза и коронарной болезни. С врожденным дефектом рецепторов к Fc-фрагментам иммуноглобулинов у мезангиоцитов связывают идиопатическую мембранозную нефропатию.

Блокаду рецепторов клетки нередко вызывают аутоантитела. Возникает одна из разновидностей цитотоксических реакций (реакции инактивации и нейтрализации), проявляющаяся антительными болезнями рецепторов. Среди них миастения, в развитии которой участвуют антитела к ацетилхолиновым рецепторам нервно-мышечной пластинки, а также инсулинрезистентный сахарный диабет, при котором антитела против клеточных рецепторов к инсулину блокируют эти рецепторы и не позволяют клетке отвечать на инсулиновый сигнал.
Нарушение проницаемости плазматической мембраны и состояние клетки

Существует два принципиально различных механизма проникновения взвешенных частиц в клетку через плазмолемму: микропиноцитоз (образование микропиноцитозных везикул) и диффузия. При воздействии на клетку факторов, нарушающих проницаемость плазмолеммы, может преобладать один из этих механизмов.






Наиболее просматриваемые статьи: