Oxford Medical
Вакцины будущего
Новые вакцины ближайшего будущего
Мукозальные и накожные вакцины
Микрокапсулированные вакцины
Генноинженерные вакцины
Синтетические пептидные вакцины
ДНК-вакцины
Антиидиотипические вакцины
Вакцины, содержащие продукты генов гистосовместимости
Растительные вакцины
 

Гид по разделу:

1 Вакцинация и путешествия
2 Вакцинация взрослых
3 Биотерроризм и вакцинация
4 Календарь прививок
5 Вакцинация детей

Связанные материалы
Вакцины для профилактики неинфекционных заболеваний
8 способов оставаться здоровыми (фотогалерея)
Виды вакцин
Вакцинация особых групп людей
Вакцинация лиц с различными видами патологии
Побочное действие вакцин
Медицинские противопоказания к вакцинации
Вакцины будущего


Вакцинация

Синтетические пептидные вакцины


Идея использования синтетических пептидов в качестве вакцин родилась при изучении клеточных и молекулярных механизмов развития иммунитета, прежде всего исследования начальных этапов развития иммунитета - процессинга антигена в вспомогательных клетках и презентации антигена Т-клеткам.

Вирусные и бактерийные пептиды, образующиеся из персистирующих в клетках возбудителей, взаимодействуют с антигенами гистосовместимости класса I и индуцируют прежде всего цитотоксические CD8 Т-клетки. Экзогенные антигены, попадающие в клетку в составе лизосом, расщепляются до пептидов, которые в комплексе с антигенами гистосовместимости класса II, активируют СО4 Т-хелперы.

В 1974 г. М. Села впервые описал искусственно полученный пептид, вызывающий образование антител к яичному лизоциму. При определенных условиях синтетические пептиды могут обладать такими же иммуногенными свойствами, как и естественные антигены, выделенные из возбудителей инфекционных заболеваний.

Для получения хорошего иммунного ответа необходимо, чтобы синтетический антиген содержал на менее 8 аминокислотных остатков, хотя в структуру антигенной детерминанты могут входить 3-4 аминокислоты. Минимальный молекулярный вес такой детерминанты составляет около 4000 кД.

Получены многочисленные виды искусственных антигенов: линейные полимеры, состоящие из L-аминокислот, разветвленные многоцепочечные сополимеры, конъюгаты различного рода пептидов с аминокислотами гомополимерами.

Синтезированы и испытаны полисахариды, аналогичные естественным антигенам, например, сальмонеллезным полисахаридам. Молекула синтетических вакцин может содержать разнородные эпитопы, которые способны формировать иммунитет к разным видам инфекций.

Экспериментальные синтетические вакцины получены против:

  • дифтерии,
  • холеры,
  • стрептококковой инфекции,
  • гепатита В,
  • гриппа,
  • ящура,
  • клещевого энцефалита,
  • пневмококковой,
  • сальмонеллезной инфекций.

Несмотря на значительные успехи в теоретическом обосновании возможности использования синтетических пептидов для создания вакцин, ни один препарат такого типа не зарегистрирован в международной медицинской практике. Однако есть все основания считать, что синтетические пептиды найдут применение в качестве вакцин.

У синтетических пептидов нет недостатков, характерных для живых вакцин (реверсия патогенных свойств, остаточная вирулентность, неполная инактивация и т.п.). Синтетические вакцины отличаются высокой степенью стандартности, обладают слабой реактогенностью, они безопасны, с помощью таких вакцин можно избежать развития аутоиммунных процессов при иммунизации, а при использовании доминантных пептидов можно получить вакцины против возбудителей с высокой степенью изменчивости.

ВОЗ одобрила рекомендации по разработке и контролю синтетических пептидных вакцин (1997 г.). Прежде всего должен быть детально отработан метод искусственного синтеза выбранных пептидов и получены доказательства устойчивости такого синтеза. Должны быть идентифицированы отдельные пептиды, определены модифицирующие гликозильные, липидные и другие группировки, охарактеризованы примеси, которые могут быть при синтезе пептидного мономера, описаны методы его очистки. Все контрольные измерения необходимо производить с использованием референс-препаратов. Следует определить лимиты конечной концентрации всех добавок (консерванты, стабилизаторы и пр.). Консерванты не добавляются в препараты, расфасованные по 1 дозе.

Синтетические пептиды обладают слабой иммуногенностью. Для их стабилизации, доставки к иммунокомпетентным клеткам и стимуляции иммунного ответа необходим носитель или какой-либо другой адъювант (иммуностимулирующий комплекс, микросферы, липосомы и пр.). Носитель не только помогает пептиду, он способен индуцировать ответ на себя, но не должен доминировать над ответом к пептиду и нарушать его специфичность. Необходимо изучить, на какие иммунокомпетентные клетки действует конъюгат пептида с носителем.

На стадии конъюгирования пептида с носителем надо следить за постоянством весовых соотношений пептида с носителем, которые не должны колебаться от серии к серии. Носитель должен иметь собственную спецификацию по характеристике его биологических свойств и структуры, включая молекулярные параметры.

При использовании других адъювантов следует описать способ взаимодействия пептида с адъювантом и изучить процесс десорбции пептида с адъюванта в течение срока годности препарата.

Конъюгирование и полимеризация, необходимые для получения вакцин, не должны вызывать побочных реакций у экспериментных животных и человека. Образующиеся антитела должны быть проверены на перекрестные реакции с антигенами из различных тканей человека.

Все химические и биологические реагенты, используемые в процессе получения вакцины, должны удовлетворять требованиям международной или национальной фармакопеи. Доклиническая фаза изучения пептидных вакцин должна включать биологические, биохимические, иммунологические, токсикологические, гистопатологические исследования, испытания разных доз и схем введения препарата, получение доказательств его стабильности и безвредности. В рамках рутинного контроля определяются пирогенность, стерильность, иммуногенность и другие параметры безопасности и активности вакцин.