Вакцины

Название «вакцины» было дано Л. Пастером всем прививочным препаратам, полученным из микроорганизмов и их продуктов.

Э. Дженнером была получена первая живая вакцина, содержащая вирус коровьей оспы (yaccinus - коровий), идентичный по антигенным свойствам вирусу натуральной оспы человека, но маловирулентный хтя человека. Таким образом, первый вакцинный штамм был заимствован из природы. Заслугой Л. Пастера была разработка принципов направленного получения вакцинных штаммов - селекция спонтанных мутантов с пониженной вирулентностью и сохранными иммуногенными свойствами путем культивирования их в определенных условиях или пассирования через организм устойчивых к данной инфекции животных.

Исходя из этих принципов были получены вакцины первого поколения: против бешенства, туберкулеза, чумы, туляремии, сибирской язвы, полиомиелита, кори, паротита и др. Живые вакцины создают, как правило, напряженный иммунитет, сходный с постинфекционным.

В большинстве случаев достаточно бывает однократной вакцинации живой вакциной, так как вакцинный штамм может размножаться и персистировать в организме. Применение живых вакцин опасно для людей (особенно детей) с врожденными или приобретенными иммунодефицитными состояниями, на фоне которых возбудители с пониженной вирулентностью могут вызвать тяжелые инфекционные осложнения.

Убитые вакцины готовят из микроорганизмов, обладающих максимально выраженной иммуногенностью, инактивированных прогреванием, УФ-лучами или химическими веществами (формалином, фенолом, спиртом и др.) в условиях, исключающих денатурацию антигенов. Примерами убитых вакцин могут служить вакцины против коклюша, лептоспироза, клещевого энцефалита. Следует учитывать, что аттенуированный, или убитый, возбудитель, с точки зрения современной иммунологии, - это множество различных антигенных детерминант, из которых «протективностью», т.е. способностью индуцировать защитный иммунитет, обладают очень немногие. В связи с этим целесообразно усовершенствование вакцин путем использования компонентов бактериальных клеток и вирионов, обладающих наиболее выраженным протективным действием, и очистки вакцинных препаратов от токсичных или аллергизирующих компонентов. Выделение из бактериальных клеток компонентов, соответствующих протективным антигенам, позволило получить вакцины второго поколения - химические. По сравнению с убитыми и живыми вакцинами химические вакцины менее реактогенны. Примером может служить холерная вакцина, которая состоит из двух компонентов: холерогена-анатоксина и ЛПС, извлеченного из холерных вибрионов. Аналогами бактериальных химических вакцин являются вирусные субъединичные (расщепленные) вакцины, содержащие лишь некоторые наиболее иммуногенные компоненты вирионов. Примером является противогриппозная вакцина, включающая гемагглютинин и нейраминидазу, т.е. именно те антигены, против которых вырабатываются вируснейтрализующие антитела. Субъединичные вакцины оказались наименее реактогенными, но и наименее иммуногенными.

Для повышения иммуногенности химических и субъединичных вакцин к ним добавляют разного рода адъюванты (adjuvans - помогающий, поддерживающий): гидрооксид алюминия, алюминиево-калиевые квасцы, фосфат алюминия и др. Те же адъюванты добавляют для повышения иммуногенности и к препаратам анатоксинов.

Анатоксины получают путем обработки токсинов формалином (0,3% раствор) при температуре 37°С в течение 30 дней. При этом токсин утрачивает ядовитость, но сохраняет способность индуцировать синтез антитоксических антител. Анатоксинами широко пользуются для выработки активного антитоксического иммунитета при специфической профилактике столбняка, дифтерии и других инфекций, возбудители которых продуцируют экзотоксины.

Достижения современной фундаментальной иммунологии и молекулярной биологии позволяют получить в чистом виде антигенные детерминанты (эпитопы). Правда, изолированная антигенная детерминанта иммуногенностью не обладает. Поэтому создание вакцин новых поколений требует конъюгации антигенных детерминант с молекулой-носителем. В качестве носителей можно использовать как природные белки, так и синтетические полиэлектролиты. Конструирование таких искусственных вакцин позволяет соединить несколько эпитопов разной специфичности с общим носителем, ввести в такой комплекс необходимую адъювантную группировку.

Другой принцип используется при создании вакцин следующего поколения - генноинженерных: на основе картирования геномов микроорганизмов гены, контролирующие нужные антигенные детерминанты, переносят в геном других микроорганизмов и клонируют в них, добиваясь экспрессии этих генов в новых условиях.

Сравнительно недавно была обоснована принципиальная возможность получения вакцин на основе антиидиотипических антител. Это объясняется близким структурным сходством между эпитопом антигена и активным центром антиидиотипического антитела, распознающим идиотипическии эпитоп антитела к данному антигену. Показано, например, что антитела против антитоксического иммуноглобулина (антиидиотипические) могут иммунизировать животное подобно анатоксину.

Вакцинация должна обеспечивать доставку антигенных эпитопов к иммунокомпетентным клеткам, при этом необходимо исключить возможность изменения их структуры под действием ферментов. Одно из перспективных решений этой проблемы связано с использованием липосом - микроскопических пузырьков, состоящих из двуслойных фосфолипидных мембран. Благодаря их сходству с клеточными мембранами липосомы не токсичны для организма, а заключенное в них вещество защищено от разбавления и деградации в крови. Липосомы способны адсорбироваться на клетках, причем их содержимое медленно поступает внутрь клетки. Фагоцитирующие клетки могут захватывать липосомы путем эндоцитоза с последующей деградацией их мембран. Антигены, включенные в состав поверхностной мембраны липосом, приобретают свойства адъюванта - способность вызывать сильный иммунный ответ. Другие антигены можно вводить в содержимое липосом. В эксперименте такие «липосомные» вакцины вы-швали тысячекратное усиление иммунного ответа.

Часть вакцин используется для обязательной плановой вакцинации детского населения: противотуберкулезная вакцина BCG, полиомие-литная вакцина, коревая, паротитная, АКДС (адсорбированная вак-цина против коклюша, дифтерии и столбняка).

Другие вакцины обязательны для введения определенным континентам в определенных районах (например, вакцина против клещевого энцефалита) или при опасности профессиональных контактов с возбудителем (например, вакцины против зооантропонозных инфекций). По эпидемиологическим показаниям начинают применять вакцины, предназначенные для предупреждения распространения эпидемий, например эпидемии гриппа.

При необходимости проведения массовой вакцинации населения по эпидемиологическим показаниям в настоящее время применяют безыгольный струйный инъектор. В основе безыгольного метода введения препарата лежит способность тонкой струи жидкости, выходящей под большим давлением, пробивать кожу и проникать на определенную глубину. Преимуществами такого метода являются: высокая производительность и экономичность, техническая простота соблюдения стерильности, исключение возможности передачи так называемых шпри-цевых инфекций (гепатит В, СПИД) и безболезненность. Общими требованиями к вакцинным препаратам являются: высокая иммуноген-ность (способность обеспечивать надежную противоинфекционную защиту), ареактогенность (отсутствие выраженных побочных реакций), безвредность и минимальное сенсибилизирующее действие.

До настоящего времени далеко не все вакцинные препараты отвечают этим требованиям. Применение многих вакцинных препаратов у определенной части вакцинированных людей сопровождается побочными реакциями и осложнениями. Частично осложнения являются следствием антигенной перегрузки, особенно у детей 1-го года жизни. В течение 1-го года жизни ребенок, как правило, получает 4-5 вакцинных препаратов. В течение первых 10 лет жизни «календарь прививок» создает высокую антигенную нагрузку на иммунную систему детского организма. Результатом может быть сенсибилизация, сопровождающаяся развитием гетероаллергии. Некоторые живые вакцины (против бешенства, против желтой лихорадки) у детей с иммунодефицитными состояниями оказываются энцефалитогенными. Осложнения при плановой вакцинации могут быть связаны с несоблюдением противопоказаний. К числу отдаленных осложнений вакцинации можно отнести развитие аутоиммунных заболеваний за счет действия перекрестно реагирующих антигенов в составе некоторых вакцин.

Значительно более ограничено применение вакцин с целью иммунотерапии, в основном при инфекциях с хроническим, затяжным течением. С этой целью применяют, например, убитые вакцины: стафилококковую, гонококковую, бруцеллезную. В одних случаях курс вакцинотерапии может оказывать иммуностимулирующее, в других - десенсибилизирующее действие.





Также в разделе: Клиническая иммунология:
  » Оценка иммунного статуса
  » Иммунные сыворотки и иммуноглобулины
  » Получение моноклональных антител (гибридомная технология)
  » Серологические реакции